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PREFACE

An adaptive controller is one which has the capability of

learning about unknown aspects of a system being controlled and then

modifying its control regime in an effort to improve the quality of

the control exerted.

This paper is devoted to a mathematical formulation and com-

putational solution of the problems of system identification and

the determination of unmeasurable state variables on the basis of

observations of a process, two topics of central importance in the

design of adaptive ccmtrollers.

The approach suggested--based on the theory of quasilineari-

zation--is an outgrowth of continuing RAND research on the computa-

tional solution of multi-point boumdary-value problems. The paper

should be of interest to control engineers and numerical analysts.



v

SUMMARY

The dynamical equations for a system are prescribed in the

form

(1) x = g(x,*), x(O) = C,

where the system parameter vector O and the initial vector c are un-

known. Noisy observations on, e.g., the first component of the state

vector, xI(t), are made at times t,

(2) x_(ti) O b,, i =

where bi is the observation at time t i . It is desired to find an

initial vector c and a system parameter vector o which minimize the

sum of the squares of the deviations

N 2

(3) S = i= , {(ti) - bil.

An effective computational scheme, based on the notion of

quasilinearization, is suggested. The utility of the method is

illustrated by considering a process described by the Van der Pol

equation, in which the system parameter and the initial velocity

are to be determined on the basis of observations of the displace-

ments at various times. A FORTA program is provided.

These considerations provide a general approach to the problems

of system identification and the determination of unmeasurable state

variables, two matters of prime importance in the design of adaptive

controllers.
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I. INTRODUCTION

Much of the modern theary of control processes is devoted to

the minimization of functionals of the form

T

J[y] = r h(x,y)dt

0

where the state vector x, which is of dimension R, and the control

vector y are related by the dynamical equation

(2) x = g(x,y) , x(O) = c .

Though much progress has been made in the analytical and computa-

tional treatment of such problems [1,2], much remains to be done.

In particular, it must be recognized that frequently it is not pos-

sible to measure all of the components of the state vector, and the

dynamical equation, Eq. (2), may not be known precisely by the con-

troller. Under these circumstances effective control is more diffi-

cult to achieve, but not impossible. Some of the progress which has

been made in treating these matters is discussed in r2,3]. In addi-

tion, various questions arise concerning the choice of the index of

performance in Eq. (1), and some are treated in [4].

In this Memorandum our aim is to show how many control problems

involving unmeasurable state variables and unknown system dynamics

lead, from the mathematical viewpoint, to nonlinear multi-point bound-

ary value problems, and also to show how the quasilinearization tech-

nique, discussed in Refs. [5,6,7], leads to an efficient computational

mode of solution. In effect, a procedure for the design of a broad

class of adaptive controllers is given.
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II. FCRMIATION

Let us suppose that the exact dynamical equation is unknown to

the controller but that its general form is known, the only unknowns

being a vector of system constants y. The system equations are then

assumed to be

(1) = g(xyY)

In addition we assume that at certain times some of the components

of the state vector are measured by sensing equipment and the con-

troller is apprised of these measurements. The basic problem of feed-

back control is the determination of the optimal choice of the control

vector y for any set of circumstances in which the controller may

find itself.

We shall treat this problem by seeking to determine the values

of the parameters in Eq. (1) and the solution of Eq. (1) which are

in best agreement with the measurements, which reduces the problem

to the classical one mentioned in Section I.

More precisely, we wish to determine the vector a and a complete

set of initial conditions c so that the solution of the system

(2) i = g(x,a) , x(O) = c,

is in closest agreement with the observations. For ease of descrip-

tion let us suppose that observations of the first component of the

state vector are available at times ti, i=l,2,...,N. We denote the

observed value at time t i by bi. Our aim is to determine the system

parameter vector a and the initial state vector c that minimize the

sum of the squares of the deviations
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N

where x 1 (ti) is the first component of the vector x evaluated at

t = t As was mentioned earlier, once the minimizing system vector

and initial s';ate vector are determined, we shall consider them to be
the "actual" system and initial state vectors and control the systm
on that basis. As the process continues, the identification and de-
termination procedures are to be repeated from time to time, so that

adaptation is possible.
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III. A PRELIMINARY SIMPLIFICATION

It is inconvenient to consider the system vector a and the initial

state vector c to be different types of vectors. Let us consider a

to be part of the state vector, where a is subject to the equation

(1) a = o.

Then our object is to determine the initial vectors &(0) and x(O) in

such a way that we minimize the sum

N 2

(2) S (xI(ti) bi)

i=l

where

(3) 0 ~,)

But this is equivalent to the problem of minimizing the sum S, subject

to the condition

(4 ) = g(x), x(O) = C,

where the minimization is over the initial vectors c, through a re-

interpretation of x,g(x), and c.



IV. QUASILINAMZATION

Consider the sequence of vector functions x(o)(t), x(1)(t), ... ,

x(2) (t), ... defined in this recursive manner. The vector function

x(o)(t) is chosen on the interval 0 _g t < tN ' After the function

x (k)(t) is determined, the vector function x(k)(t) is taken to be the

solution of the linearized system of differential equations

( (k+l) g(x(k)) + R lm
m=l m

i = 1,2,...,R

The initial conditions are to be selected so as to minimize the sum

(2) S1  ( ck+1) (ti- bi
i=l

Then, in many instances of practical importance, [5,7], the sequence

of vectors x(k)(t) will converge quadratically to the desired solution

of the problem of the previous section, and the vectors x (k)(0) ill

converge to the desired minimizing initial vector. Other applications

of this idea to orbit determination [8] and system design [9] have

been made.
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V. CO1UTATIONAL CONSIDEATIOS - I

Since x(k+l)(t) is the solution of a linear system of differen-

tial solutions, it may be represented in the form

R

(1) x(k+l)t) = p(t) + c h(i)(t),

i=l

where the vector function p(t) is the particular solution of Eq. (4.1)

subject to the initial conditions

(2) p(O) = 0,

and the vector h(i) ( t ) is the solution of the homogeneous form of

E4. (4.1), the initial vector having the ith row unity and the others

zero. These vectors, p(t) and h(i)(t), are all considered to be

determined computationally on the interval OXtgt N . The scalars

c,, i=l,2,...,R, are those that minimize the sum

N R 2

(3) S1 = Y {pl(tj) +Y cihi)(tj) - bj}

j=l i=l

and may be determined from the normal equations [10]

() N R i)t b ()t 0
(u.) {Pl(tj) + h t - bj}m)(tj) = 0,

J=l i=l

m =

In this way the problem of determining the optimal initial

vector is made to depend upon the numerical solution of systems of

linear initial-value problems and of linear algebraic equations.

Let us next consider a special case.
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VI. THE VAN IER POL EQUATION

Suppose that a process is described by Van der Pol's equation

[11,12

u - X( 2 _ )u_- ,

where now x is a scalar and X is an unknown constant. We suppose

that the following three observations of the displacement x have

been made

(2) x(4) = - 1.80843

x(6) = - 1.63385

x(8) = - 1.l-4456

We wish to determine the unknown value of X and both x and u for

t = 4.

We consider the system of equations

(3) x u

= - L(x2_ l)u - x

x:o

and wish to determine x(4), u(4) and X(4) so that Eqs. (2) will be

satisfied. In this instance it is not necessary to use the method

of least squares since only three observations are given.

To obtain an initial approxiLaation we observe that

(4) x(6) 2 x(4 )
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(5) x(8) - x(6) .14 (6)

(6 6) - i(.) .ol4 X(4.o)

In view of Eq. (1) we are led to the initial approximation for X,

(7) X ; 7 •

Next we integrate the system (3) with these initial conditions

(8) x(4) = - 1.808 43

u(4) = + 0.08

x(4) = + 7.0

on the interval 4:&t 8 and obtain the functions xo(t), ut), %o(t)

on that interval.

To obtain the (n+l) s t approximation, after having calculated

th
the n , we use the linearized relations

(9) n+1 =Uhl

nl= - X 2 - n  X ) n + (Xn+ I x - nXnUn- i]

+ (Un+ I Un)[- X4x. 1)] + (Xfl+l- Xn ) -(xn2  l>n]

in+l 0 0

together with the three-point boundary conditions of Eqs. (2).
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The results of a numerical experiment are summarized in the

Table 1.

Table 1

THE FIRST NUMFaICAL EXPERIMENT

Initial Iteration Iteration Iteration
Approx. Two Three Four True Values

x(4) -1.8o843 -1.80843 -1.8o843 -1.80843 -1.8084322

u(4) +0.08 +0.064454 +0.0794911 +0.079366 .079366909

(4) +7.0 9.91541 1 o.0004 10.00000 10.00000

A second experiment was carried out with poorer estimates of

the initial velocity and system parameter. The results are presented

in Table 2.

Table 2

THE SECOND NIUMERICAL EXPERIMEN1T

Initial Iteration Iteration Iteration
Approx. Two Four Six True Values

x(4) -1.80843 -1.80843 -1.8o843 -1.8o843 -1.8o84322

u(4) 0.1000 -2.o758 0.599288 .0792063 .079366909

x(4) 5.000 3.87992 11.4091 9.999 10.000

A third trial in which the initial estimate of the system

parameter was taken to be 20 resulted in an overflow, so that no

results are available.

The data in EqI. (8) were generated by integrating Van der Pol's

equation with
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0 = 0.0

(10) x(o) = 1.0

i(O) = 0.0

A graph is presented in Fig. 1.

The FORTRAN program which produced these results is given next.

The subroutines for integration of a system of ordinary differential

equations and the numerical solution of linear algebraic equations

are

Adams-Moulton, Runge-Kutta Integration FAP Coded Subroutine
), Robert Causey and Werner L. Frank, Space Technology

Laboratories; adapted by W. L. Sibley, The RAND Corporation,
June 1961, RAND 7090 Library Routine Number X013. (See also
SHARE Distribution #6o2.)

Matrix Inversion with Accompanying Solution of Linear
Equations, Burton S. Garbow, Argonne National Laboratory,
February 1959, 70& SHARE Routine Number 664.

Phase II in the program is used when the number of observations

equals the number of unknowns and phase III is used when the number

of observations is greater than the number of unknowns.

The following is a brief summary of the FORTRAN code for phase

II. After the necessary data have been input, the initial approxi-

mation is generated by integrating the nonlinear differential

equations. The (n+l)st approximation is obtained by integrating the

particular and homogeneous equations, determining the unknown con-

stants, and forming the linear combination of the particular and

homogeneous solutions. This (n+l)st approximation is printed and

stored as the nt h approximation in preparation for the next iteration.

If the initial values of the (n+l)st approximation agree with those
othnth

of the n tapproximation to 5 or more decimal places, the problem is

considered solved.
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CVDP021 VAN DER POL - PHASES II, III
COMMON SCRACHT,~lN1,4AXKMAXHGRIDNTIME'XOOSWHPABXUZTI.
1 PREVNOBS#IFLAG
DIMENSION SCRACH(64),T(150)tNTIME(1C"'),XOBSC1O0) ,w(391001),

1 H(393,1001) ,P(391001 ) A( 16916),B( 16,1) ,PREV(3)
C
C INPUT NOBS OBSERVATIONS OF X AT KNOWN TIMES
C DETERMINE SYSTEM PARAMETER LAMBDA (Z IN FORTRAN)
C INPUT AND START

1. CALL INSTRT
C
C K ITERATIONS
C

DO 99 K=1,KMAX
C

DO 2 1=1*150
2 T(I)='*~O

T (2) =T I
T (3) =HGRI D
TC4)=1*0
T (8) =1.0
T( 12)=1.0

X=PREV( 1)
U=PREV(2)
Z=PREV( 3)

CALL INTCT*129N1,O. ,0. 0O. .O.,O.,O.
N=1
L=3

DO 21 1=193
DO 21 J=193

L=L+l
21 H(IJiN)=T(L)

DO 22 1=103
L=L+1

22 P(IN)=T(L)
C
C INTEGRATE P'S AND HIS

DO 4 N=2,NMAX
X=W( 1 N)
U=W (2 9N)
Z=W (3 ,N)
CALL INTM

L=3
DO 3 1=193
DC 3 J=193

L=L+1
3 H(IJtN)=T(L)

DO 4 1=193
L=L+1

4 P(IgN)=T(L)
C
C DETERMINE CONSTANTS9 OR INITIAL VALUES

CALL CNSTNT
TIME=TI
PRINT 50, KgTIME,(B(I,1)vI=1,3)

C
C NEW VAR IABLES

DO 7 N=2,NMAX
DO 6 1=193
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W(1I N)=PC I N)
D0 6 J=193

6 W(IPN)=W( IN)+B(J,1)*H(JIN)
FN= N-i
T IME=FN*HGR ID+T I

7 PRINT 70, TIME9CW(IgN)9I=1,3)
C
C COMPARE CONSTANTS

DO 8 1=193
G=ABSF(B( I ,)-PREV( I))
IF(G-.000001 18,89

8 CONTINUE
GO TO 1

9 DO 10 1=193
10 PREV(I)=B(I9l)

C
99 CONTINUE

GO TO 1
C

50 FORMAT(1HO//59X9HITE-RATION, 13//3.8X1HT9,13X1HX,19XlHU17X6H-SYSTEM//
1 3OXF~o.2,3E20*6)

70 FORMAT(3OXF1O.2,3E2096)
END

CVDPO22 INPUT-START, VAN DER POL PHASE 119111
SUBROUTINE INSTRT
COMMON SCRACHTN1 9NMAXKMAXHGRIONTIMEXOBSWHPABPXPuZTI,

1 PREVNOBS9IFLAG
DIMENSION SCRACH(64),T(150,,NTIME(100,,XOBS(100, ,W(3,1001),

1 H(3,3,1001 'P(3,1001),A(16916) ,t(16,1) ,PREV(3)
C INPUT

READ 110,N19NOBSKMAXNMAXHGRID,(NTIrVE(I),XOBS(I),1=1NOBS)
IF(NMAX)9,99,

1 PRINT 10,Nl'NOBSKMAXNMAXHGRID,(NTIME(I),XOBS(I),1=1,NOBS)
C
C START

IFLAG=1
READ 120,TIgXUZ

DO 2 1=1,150
2 T(I)=0.0

T(2 )T1
T( 3) =HGRID
T(4)=X
T(C5 )=U
T(C6)1=Z

CALL INT(T*3sNlv0.,O0.0ew0.0. I
K=O

PRINT 50, KTC2),(TCI),I=496)
C

DO 4 N=2,NMAX
CALL INTM
DO 3 1=193

3 WCIN).TCI+3)
4 PRINT 70, T(2)9CT(I),I=496)

C
IFLAG=2
PREV( 1 )X
PREV(2 )U
PREVC 3 )Z



CRETURN ii41

9 CALL EXIT
10 FORMAT(IHl3OX

1 58HVAN DER POL - PHASE II - DETERMINATION OF SYSTEM PARAMETER//
2 20X4IlOFlU.4/( 18Xll29El6o6tll29El6o69ll29El6o6#ll29El6o6))

50 FORMAT(1H0//59X9HITERATION9 13//38X1HT,13X1HX,19Xl1HU,17X6HSYSTEM//
1 30XF10.2,3E20.6)

70 FORMAT(3OXF1O.2,3E20.6)
110 FORMAT(4I5,F1U.2,2(l4,El1.6)/(4(14,El1.6)))
120 FORMAT(4E1296)

END

CVDP023 DAUX - VAN DER POL - PHASE 119111
SUBROUTINE DAUX
COMMON SCRACHTN1 ,NMAXKMAXHGRIDNTIMEXOBSWHPABXUZTI,

I PREVqNOBS9IFLAG
DIMENSION SCRACH(64),T(150),NTIME(1O0flXOBS(100) ,WC3'1001).

1 H(3,3,1001) ,P(3,1001),A(16916),B(16,1),PREV(3)
C

GO TO C192)9IFLAG
C NONLINEAR EQUATIONS

1 T(7)=T(5)

T (9) =U.
RETURN

C LINEAR EQUATIONS
2 XX=X**2

AA=-2o*X*U*Z-1.
BB=Z*(l1.-XX)
CC=U*( 1.-XX)
L=13

DO 3 1=194
L=L+3

T (L) =T(L-1 1)
T(L+1)=AA*T(L-12)+BB*T(L-11)+CC*T(L-10 )

3 T(L+2)=0.0
T(L+1)=T(L+1)+U*Z*(39*XX-19)

RETURN
END

CVDP024 CNSTNT - PHASE 11
SUBROUTINE CNSTNT

COMMON SCRACHTN1 ,NMAX.KM"AXH6RID.NTIMEXOBS.W.HPA.BXULTl,
1 PREVgNOB5,IFLAG

DIMENSION SCRACH(64),T(150),NTIM4E(131,)XOBSC100) ,WC3,1001),
1 H(3,3,1001l) P(3,1v01),AC16,16)96(1691),PREVC3)

C
DO 1 I=1,3

N=NTIME( I)
B( 1,1)=XOBS (1)-P (1 'N)
D%" 1 J=193

1 ACIJ'j=H(JglgN)
CALL MATINV(A,3,E3,1,DET)
DC 2 1=193

2 WCIg1)=B(I,1)
RETURN

END
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VII. COMPUTATIONAL COISIDERATIONS - II

The successive approximation method proposed, which is abstractly

equivalent to Newton's method for extracting roots, shares with that

procedure the desirable property of quadratic convergence. This

means, roughly, that the number of correct digits is doubled with

each additional iteration. Furthermore, the computational load at

each stage is light, requiring only the integration of some initial-

value problems and the solution of some linear algebraic equations.

Nevertheless, difficulties can arise. Let us discuss some of these.

In the first place, a solution to a nonlinear multipoint boundary-

value problem need not exist, nor need it be unique. With well-

formulated problems arising from physical sources, how.ever, we would

not expect this to be a source of difficulty. Of more practical

import is the fact that if the initial approximation is too far re-

moved from the solution, the iterations mYr not converge. This

possibility deserves further investigation.

We have found that the integration of the initial value problems

can be difficult, for we wish to choose a grid size that is suffi-

ciently small to give the required accuracy yet not so small as to

involve excessive computing costs. Furthermore the numerical solu-

tion of the linear algebraic equations for the multipliers of the

solution of the homogeneous equations can be difficult, for though

the matrix involved is nonsingular, it can be ill-conditioned. A

promising method for overcoming this difficulty is described in r13].

The successive approximation scheme proposed involves storing

the values of the dependent variables at one stage to calculate their
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values in the next. The high-speed memory limitations of the com-

puter being used can be exceeded. A method for overcoming this

is described in l14.
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